
1

A Novel Text Dependent Speaker Recognition
Model using Adaptive Online Algorithms

Akhil Perincherry

Department of Electrical and Computer Engineering, University of Florida

Abstract—Speech modality is constantly used in security in
the field of biometrics as it is a natural way to communicate and
the recognition algorithms currently employed provide reliable
recognition rates. Here, the use of adaptive online algorithms such
as RLS/NLMS are proposed to perform speaker recognition. The
filter coefficients from these adaptive filters were seen to model
the voice characteristics efficiently. To highlight the advantages
of the proposed technique over the ones used currently, the
model is compared with the state of the art MFCC-VQ method
for speaker recognition. It was observed that RLS performs
even better than the state of the art technique while NLMS
although providing reasonable performance was not as good as
the traditional techniques. The RLS model resulted in 100%
classification accuracy at low computation time hence justifying
its use. Also, RLS provided Equal Error Rates (EER) of around
10% while NLMS was seen to generate around 15% EER.
Detailed comparisons and it’s implications are discussed in the
results section.

Index Terms—RLS, NLMS, MFCC, VQ, Adaptive filter, Pre-
diction, Biometrics

I. INTRODUCTION

AUTOMATIC speech recognition has wide application
in the field of biometrics. It is a natural and easy

way for man-machine communication. Speech signals are
parametrized and the feature vectors for each subject are
stored in the gallery. Decisions are arrived at by compar-
ing the feature vectors from the test set or the query to
the gallery database using an appropriate distance measure.
Current standard techniques for speech recognition are Mel
Frequency Cepstral coefficients (MFCC) feature extraction
and pattern classification using Vector Quantization (VQ)
technique via the Linde-Buzo-Gray algorithm [7]. [5] uses the
aforementioned MFCC-VQ technique whose steps are outlined
in the Section II. Its superior performance is owing to the
fact that, the technique was formulated by incorporating the
prior knowledge of the working of the human acoustic system.
Other techniques that are currently used for feature extraction
are Linear Predictive Coding, Perceptual Linear Prediction,
Neural networks ET AL. Dynamic Time Warping, Hidden
Markov Models and Support Vector Machines are the state
of the art classification techniques. Typically, since the speech
is recorded in an uncontrolled environment, the processing
needs to be robust to noise and interference. [3] and [4] uses
RLS/NLMS respectively for denoising the signal in the pre-
processing stage before feeding it to the above stated feature
extraction-classification techniques. [3] shows an improvement
of 10-15% in classification accuracy by using NLMS as a
denoising algorithm while [4] shows an improvement by 6%

after using Fast Recursive Least Squares (FRLS) in the pre-
processing stage. It needs to be noted that, for NLMS/RLS to
be used in denoising, we need to record the background noise
as well along with the speech. Noise can then be modeled
using adaptive filters and subtracted from the input to get the
denoised waveforms.

In this paper, RLS/NLMS are proposed as a complete
feature extraction-classification technique rather than merely
being used as a pre-processing technique. Since it is seen that
speech signal needs to have a good SNR, RLS/NLMS can
be seen as potential candidates for the considered problem.
Also, speaker recognition thrives by discriminating the spectral
content of the different subjects and RLS/NLMS performs
a good job modeling the frequency information. Therefore,
it is logical to use these online learning algorithms in the
manner proposed in the upcoming sections. Moreover, the non
stationarity of the speech can be well defined by the RLS
owing to a dedicated free parameter known as the Forgetting
Factor, which is elaborated in the next section. This proposed
technique has not been implemented before but is seen to work
better than the state of the art MFCC-VQ technique for the
datasets considered here.

The LMS filter involves a filtering stage and an adaptive
stage. The filtering stage involves computing the output of a
filter to the input and estimating the error while the adaptive
stage adjusts the filter weights aiming to minimize the error in
a feedback loop. The normalized LMS (NLMS) is employed
to alleviate the problem of input scaling of LMS by dividing
the the normal LMS update equation with the input power. In
addition, a regularization parameter is added to avoid divide
by zero condition. It is to be noted that the LMS never
gives the optimum solution (Wiener solution) but it fluctuates
around the optimum solution marginally depending on the
step size. NLMS updates the weights in a direction opposite
to the gradient vector updating the weights such that they
lead to minimum MSE. A large step size would mean less
convergence time but also that the updation wouldn’t be too
stable around the optimum. A high updation step could reverse
the gradient direction back and forth resulting in increased
vacillations. A low step size might take a longer convergence
time, hence an optimum step size has to be arrived at using
this inherent tradeoff.

The Recursive least squares (RLS) is an adaptive filter
which recursively estimates the coefficients by minimizing
a weighted linear least squares cost function relating to the
input signals. Its rate of convergence is an order faster than
the LMS filter because the RLS filter whitens the data by
using the inverse correlation matrix of the data although, this

2

also results in increase of computational complexity. The µ
parameter in LMS or the step size is replaced by the inverse
of the correlation matrix of the input vector which whitens the
tap inputs. Also, the rate of convergence of the RLS algorithm
does not vary with condition number of the ensemble average
correlation matrix of the input vector. The forgetting factor
in RLS helps tune the filter with respect to the environment
being stationary or non stationary. The excess mean square in
RLS asymptotically converges to zero.

A typical adaptive filter predictor model is shown in Figure
1. Since it’s a predictor model, the input is the current sample
and the desired is the next future sample. The filter models
the system by minimizing the cost function at each sample.

Figure 1. Adaptive predictor model

The paper is organized as follows. The theory and the under-
lying mathematical formulations behind the 3 algorithms are
discussed in Section II. The implementation details including
the dataset and the algorithm are explained in Section III. The
results demonstrating the model’s efficacy are elaborated in
Section IV i.e. the filter trajectories, the predicted responses,
the classification accuracy ET AL. Finally, the paper is con-
cluded and future avenues are explored in Section V.

II. THEORY

In adaptive filtering framework, the aim is to find a filter
that minimizes the mean squared error between the desired
d(n) and the filter output y(n). Finding FIR filter coefficients
w that minimizes the squared error i.e.

minw E [e2(n)] (1)

where E[.] denotes the statistical expectation boils down to
a solution of linear system of equations known as the Wiener
Hopf equations (2).

w = R−1p (2)

where,

R = E[x[n]xT [n]] is the autocorrelation matrix of the input
signal.

p = E[d[n]x[n]] is the cross correlation vector between the
desired and input signal.

Solving these set of linear equations is not computationally
feasible as taking matrix inverse is O(n3) which is exactly
what Wiener Filter does. NLMS and RLS approximates this
procedure in a computationally feasible manner.

RLS finds the Wiener solution at every sample recursively
using the matrix inversion lemma i.e. matrix inverse is not
computed explicitly but is updated recursively. To form these
estimates, it uses the past set of samples weighted in an ex-
ponential manner which is controlled by the Forgetting Factor
parameter. This parameter controls the impact of previously
observed data on the current estimates of the autocorrelation
matrix and cross correlation vector. The relevant equations are
discussed in section II-A.

NLMS unlike the RLS computes the sample estimates at
every instant via a gradient descent approach. Since linear
filters have their cost functions described by a convex function,
they will have one optimum solution or the global minima
and consequently, gradient descent has an easier job. Solution
moves along the direction of the negative gradient of the cost
function at every instant. The amount by which the weights
are updated depends on the step size parameter or µ. Since
the estimates are formed at every sample, NLMS estimates
vacillates around the optimum and never truly achieves the
optimum generally. The computation time is an order faster
than that of RLS but the convergence time is an order higher
in NLMS compared to RLS.

A. RLS Equations

The RLS algorithm is a system of initialize-update equations
that solves the Wiener Hopf equations in a computationally
efficient manner. The cost function that it is considered is the
Least square error of the estimate. Let order be the filter order,
α be the forgetting factor, d be the desired signal.

1) Initialize the weight vector of length order to zeros
and the inverse autocorrelation matrix P to a diagonally
loaded matrix - loading factor of 1000 (heuristically)
was chosen here.

2) Consider the first order number of elements of the input
to get the input vector u.

3) Find the instantaneous output using the current weight
vector and the input considered in the above step.

4) Compute the instantaneous error.

5) Use the above result to update the weight vector as in
(3).

6) Slide the input used in step 2 by one sample and repeat
the whole procedure.

Initialization equations:

west(0) = 0

P (0) = largeNumber ∗ IdentityMatrix

The update equations are as follows:

t(n) = P (n− 1)u(n)

k(n) =
t(n)

α+ uH(n)t(n)

3

e(n) = d(n)− wH
est(n− 1)u(n)

west(n) = west(n− 1) + k(n)e(n) (3)

P (n) = α−1P (n− 1)− α−1k(n)uH(n)P (n− 1)

The forgetting factor α implies the memory of the learning
algorithm, it implies how the past input samples are weighted.
Here, the αvalues are generated in such a way that the
exponential window is halved at previous L samples i.e.

α = 0.5
1

halfSample

If window is to be designed such that the exponential
window is half at the 500th sample, α = 0.5

1
500 = 0.9986

and so on.
In a nutshell, RLS is basically solving Wiener Hopf system

of equations recursively and with an exponential window.

B. NLMS Equations

The NLMS algorithm is again a system of initialize-update
equations. The cost function that it tries to minimize is the
MSE assuming stationarity of the data. Let order be the filter
order, µ be the step size, d be the desired signal..

1) Initialize the weight vector of length order to zeros i.e.

west(0) = 0

2) Consider the first order number of elements of the input
to get the input vector u.

3) Find the instantaneous output using the current weight
vector and the input considered in the above step i.e
yest = wT

estu

4) Compute the instantaneous error i.e e(n) = d(n) −
yest(n)

5) Use the above feedback to update the weight vector by
(4).

6) Slide the input used in step 2 by one sample and
repeat the whole procedure until the end of the signal is
reached.

wi+1 = wi + (Mu ∗ u ∗ e(n))/((4)
RegularizationParameter + inputPower)

where,
• Mu is a step size scaling factor

– RegularizationParameter- 0.0001 (heuristically
chosen)

– u- Current sequence of input samples considered
– e(n)- instantaneous error

It is to be noted that the maximum step size possible in
NLMS before the model diverges is

(1/MaxEigenvalue(Inputautocorrelationmatrix))

The evaluation metrics used in making decisions are the
Normalized MSE and the Frobenius norm as shown in (5)
and (6) respectively.

NMSE =
(abs(Output− estimatedOutput)2)

mean(abs(Input)2)
(5)

For a matrix G,

FrobeniusNorm =
∑
i

∑
j

|gij |2 (6)

where, gij is the (i, j)thelement of the matrix G.

C. Mel Frequency Cepstral Coefficients - Vector Quantization
(MFCC-VQ)

Speech is a quasi-stationary signal i.e. the statistics change
throughout the duration of the signal. Hence, it is imperative
that processing be done on individual frames of the signal
where stationarity can be assumed. MFCCs are formulated
based on the human acoustic system. Humans cannot discern
between adjacent frequencies as the frequencies get higher.
Mel scale uses this information and translates frequencies on
the low range linearly while frequencies in the higher range
get mapped in a logarithmic manner as seen in (7).

M(f) = 1127 ln(1 +
f

700
) (7)

where, M is the Mel scale and f is the frequency in Hz.
The relation is graphically shown in Figure 2.

Figure 2. Relation between Mel and Frequency scale

The steps involved in the MFCC-feature extraction are
outlined below and shown in Figure 3:

• Frame the signals into small segments of around 10-20ms
duration.

• Window each frame using a tapering window (Hamming
here) to avoid discontinuities at the ends and to get a non
negative power spectral estimate (Gibbs’ phenomenon).

• Compute the power spectrum of each segment by taking
the square of the FFT magnitude of the signal.

4

– PowerSpectrum = 1
SignalLength |FFT (signal)|

2

• Compute the Mel spaced Filter bank. These are a set of
20 filter banks spaced equally on the Mel scale. Filter
bank energies are calculated by multiplying each filter
bank with the power spectral estimate and adding the
coefficients. This is done for every frame.

• Take the log of each of the 20 energies and transform
these log filter bank energies via Discrete Cosine trans-
form. Therefore, for each frame you end up with 20
coefficients. These form your feature vector.

Figure 3. MFCC Feature extraction steps

Once, the feature vectors are computed, these are com-
pressed by Vector Quantization technique via the LBG al-
gorithm [7]. Vectors from a large space are mapped onto
finite regions in the same space where each region is called a
cluster and is represented by its centroid known as a codeword.
The collection of all codewords form the code book which
make up your compressed feature vector. The speech signals
are therefore transformed into vectors in an acoustic space.
Vector quantization techniques are used for matching patterns
obtained from training vectors. LBG algorithm is the most
common technique used for vector quantization which is a
binary splitting task. A code book is formulated for each
subject. In testing, feature vectors of the testing subject is
compared to the codebook for each subject and distortion
(distance measure) with respect to each subject is computed.
The test subject will have minimum distortion with the true
speaker. We can then obtain the identity of the true speaker.

III. IMPLEMENTATION

The datasets used and the algorithm steps are briefly dis-
cussed below:

A. Dataset

There were 2 datasets that were used. Dataset 1 (available
online - [6]) comprised of 8 speakers in training and 8
speakers in testing. The training set included the speakers
speaking the word ’Zero’ while the testing included the same
speakers speaking the same word but after a period of 6
months in order to account for voice variability. Dataset 2 (self
recorded) included five speakers whose training and testing
were recorded separately after a period of 7 days. The speakers
spoke the same word ’Zero’ for comparison purposes. The
sampling frequency for dataset 1 is 12.5 kHz and 16kHz for
dataset 2. Therefore, there are in total 13 speakers (9 female
and 4 male).

B. Algorithm:

The steps involved in building the model for the 3 tech-
niques are explained in brief below.

1) RLS/NLMS:

1) Extract the training signal and perform silence detection
on it.

2) Run the RLS/NLMS algorithm on it to get the filter
weight trajectories.

3) Extract only those weight trajectories which correspond
to low NMSE values.

4) Perform steps 1-3 on the test signal.

5) Compute the Frobenius norm of the two weight matrices
and obtain the similarity distance matrix. The lowest
distance corresponds to the classified speaker.

2) MFCC-VQ:

1) Extract the training signal and perform silence detection
on it.

2) Compute the MFCC feature vectors for each signal.

3) Form a code book for each subject in the training set
using Vector Quantization via the LBG algorithm.

4) Perform steps 1-3 on the test signal.

5) Compute the Euclidean Distance or the distortion be-
tween the centroids in the code book to make the
decision.

IV. RESULTS

The algorithms were implemented in MATLAB. The en-
vironment used is Windows 8.1 Intel i7 processor with 8GB
RAM. A forgetting factor of around 0.999 and an order of 7
was seen to generate the best results for RLS while for NLMS,
a step size of 0.001, Regularization parameter of 0.0001 and
filter order 7 was seen to work adequately well. Typically, for a
non stationary signal the filter order is always low. The order
reflects on the number of past samples being considered to
arrive at the current estimate. Intuitively, one can see the extent
of the past samples affecting the current estimate in a non
stationary signal would be low since the statistics are rapidly
changing in the signal. In MFCC-VQ, the signal was divided
into 100 frames where each frame was windowed using a 256
length Hamming window. To compute the power spectrum,
a 512 point FFT was employed to ensure oversampling and
avoid aliasing. The power spectrum was passed through a total
of 20 filter banks. The RLS/NLMS filter trajectories, NMSE
curves and prediction estimates are analyzed with respect to a
particular speech signal (speaker 3 here). This signal is shown
in Figure 4.

5

A. Silence Detection

Before processing the signal, it is imperative that the si-
lence regions be removed to make the model computationally
efficient. These regions do not have any information that
can be used to discern the speakers. Silence detection was
implemented using techniques developed in [8]. The signal is
divided into multiple frames and for each frame, 2 features
are extracted i.e. the spectral centroid and the signal energy.
Energy is obtained by squaring the amplitudes of the signal
and summing them up - (8). Spectral centroid corresponds
to the center of gravity of the spectrum. It essentially gives
the ’brightness of the sound’ - (9). Using these two features
and thresholding them, one can detect the silence regions. The
process is repeated for each frame. The working is shown in
Figure 5 for speaker 3.

Energy =
1

N

N∑
n=1

|x(n)|2 (8)

SpectralCentroid =

∑N
k=1(k + 1)Xi(k)∑N

k=1Xi(k)
(9)

where,
Xi(k) is the DFT of the ithframe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Test Sequence −3

Time in Seconds

Figure 4. Speech signal for speaker 3

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

Short time energy (original)
Short time energy (filtered)

0 5 10 15 20 25 30
0

0.2

0.4

Spectral Centroid (original)
Spectral Centroid (filtered)

0 0.5 1 1.5

−0.5

0

0.5

Figure 5. Silence Detection in the case of speaker 3

B. Discriminatory Features

One of the main motivations of using Adaptive learning
algorithms was the fact that the discriminatory features used
to distinguish speakers are the subject’s audio spectral content.
This can readily be seen in Figure 6. Spectrogram of 2
different speakers are shown here and it can be verified that
the frequency content of the 2 speakers are different. This
difference can be taken advantage of using RLS/NLMS since
they are equipped to model frequency variations pretty well.
The spectrogram plots were generated by dividing the signal
into 150 windows using a hamming window and then compute
the power spectrum using the corresponding next highest
power radix 2 FFT to ensure oversampling. It is to be noted
that MFCC technique also uses this difference to distinguish
between subjects.

Figure 6. Spectrogram exhibiting spectral differences for 2 different speakers
- speakers 1 and 5

C. Filter weight trajectories

Filter coefficients model the speech signal and is updated
by the adaptive filter at every sample based on the feedback
from the cost function. Typically for a stationary signal, the
filter tracks are almost flat after the initial short convergence
phase. This is not the case in speech and hence as can be seen
in Figure 7 , the weight tracks undergo rapid transitions while
trying to model the signal. In the figure, the weight tracks
of NLMS and RLS models have been shown for a particular
speaker (speaker 3 here). It is evident that RLS reaches its

6

steady state around the 0.5s mark while NLMS takes around
0.8s. This reinforces the previous statement made about the
convergence time for NLMS being an order higher than that
of RLS. These weight values at each instant comprises the
feature vectors. Only a useful portion of this data needs to
be extracted for discrimination between the speaker classes
- specifically the portions corresponding to the maximum
spectral differences as noted from the spectrogram.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

Time in Seconds

F
ilt

er
 ta

ps

RLS Filter weight convergence − Order7 Training size:11875 Forgetting Factor:0.999

Tap1
Tap2
Tap3
Tap4
Tap5
Tap6
Tap7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in Seconds

F
ilt

er
 ta

ps

LMS Filter weight convergence − Order7 Training size:11875 Step Size:0.001

Tap 1
Tap 2
Tap 3
Tap 4
Tap 5
Tap 6
Tap 7

Figure 7. Filter weight trajectory of RLS (upper) and NLMS (lower) - Speaker
3

D. Predictor responses

Figure 8 shows the prediction estimates of both the RLS
and NLMS for speaker 3. The superiority of RLS over NLMS
can again be pointed out here. The prediction estimates by the
RLS are pretty accurate while some of the NLMS estimates are
out of place (specifically between 0.2-0.3s and 0.4-0.5s). This
tells us that in this specific problem, RLS can better model
the speech signals when compared to NLMS on account of
the free parameter to control the assumed stationarity of the
signal.

E. Learning Curves

The learning curves exhibit the learning ability of the model.
NMSE values are computed using (5) and are smoothed using
a 150 order moving average filter on account of the high
frequency of the error signal and are shown in Figure 9. It
can be seen initially when the model first receives the signal,

it has no idea of its nature and therefore the filter coefficients
cannot model the signal well and consequently leads to a high
prediction error. However, as the model learns the signal traits,
the error gradually decreases. The subsequent smaller peaks
are due to the fact that the present portion of the signal has
statistics different from what the filter was adapted to until that
point and leads to spurious peaks. The error values are much
lower in the RLS case than the NLMS (Y-axis) and also the
NLMS has a harder time learning the signal and consequently
leads to equal peaks in the learning curve.

F. Effect of step size and Forgetting Factor

Figure 10 and Figure 11 shows the effect of step size
on NLMS filter tracks and the effect of forgetting factor on
RLS weight tracks. It can be seen that a larger step size
(0.01) in NLMS means that, the gradient descent updation
happens with rapid fluctuations and the convergence values are
not accurate since the estimates bounce around the optimum
value violently. Similarly, in RLS, a lower forgetting factor
(0.99) implies less past samples have been used to arrive
at the autocorrelation and cross correlation estimates and
consequently, the estimates are not as accurate as when higher
samples are used. Therefore, the filter weights are not smooth
and they undergo changes rapidly at every updation step. It is
therefore necessary to find a good balance between accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time in Seconds

S
eq

ue
nc

e
S

am
pl

es

RLS responses Order:7 Forgetting Factor:0.999

True Values
Estimated Values

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time in Seconds

S
eq

ue
nc

e
S

am
pl

es

LMS responses Order:7 Step Size:0.001

True Values
Estimated Values

Figure 8. Prediction estimates of RLS (upper) and NLMS (lower) - Speaker
3

7

(given by the NMSE plots) and the smoothness of the filter
trajectories.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
 Smoothed NMSE − RLS Filter Order:7 Forgetting Factor:0.999

Time in seconds

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 e

rr
or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Smoothed NMSE − LMS Filter Order:7 Step Size:0.001

Time in seconds

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 e

rr
or

Figure 9. NMSE of RLS (upper) and NLMS (lower) - Speaker 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in Seconds

F
ilt

er
 ta

ps

LMS Filter weight convergence − Order7 Training size:11875 Step Size:0.001

Tap 1
Tap 2
Tap 3
Tap 4
Tap 5
Tap 6
Tap 7 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time in Seconds

F
ilt

er
 ta

ps

LMS Filter weight convergence − Order7 Training size:11875 Step Size:0.01

Tap 1
Tap 2
Tap 3
Tap 4
Tap 5
Tap 6
Tap 7

Figure 10. Effect of step size µ in NLMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

Time in Seconds

F
ilt

er
 ta

ps

RLS Filter weight convergence − Order7 Training size:11875 Forgetting Factor:0.999

Tap1
Tap2
Tap3
Tap4
Tap5
Tap6
Tap7 0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

2

4

6

Time in Seconds

F
ilt

er
 ta

ps

RLS Filter weight convergence − Order7 Training size:11875 Forgetting Factor:0.99

Tap1
Tap2
Tap3
Tap4
Tap5
Tap6
Tap7

Figure 11. Effect of Forgetting Factor α in RLS

G. ROC Curves

The model is evaluated by plotting the ROC curves which is
a variation of probability of detection with probability of false
alarm as shown in Figure 12. The thresholds were generated
by considering a linearly spaced values from the minimum
distance value to the maximum distance value from the Dis-
tance similarity matrix. It is shown that RLS approximates the
ideal ROC curve (inverted L) pretty closely when compared
to the NLMS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR

G
A

R

ROC Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR

G
A

R

ROC Curve

Figure 12. ROC Curves of RLS (upper) and NLMS (lower)

H. Error Curves

Error rate curves are obtained by plotting false reject rate
with respect to false accept rate for varying thresholds. These
are shown in Figure 13. Lower equal error rate (EER) i.e.
the point of intersection of the 2 curves generally refers to the
superior model. Here, RLS has an EER between 0.1-0.2 while
NLMS has an EER between 0.2-0.3 again showing RLS as a
better model.

I. Score distributions

The score distributions as shown in Figure 14 are more
separated out in the RLS case and hence leads to a better
decoding reducing the false alarm rates as expected.

8

J. Classification Accuracy

Now, to assess how the model performs when compared to
the traditional MFCC-VQ, all 3 techniques were implemented
for the same dataset and compared. It is seen that the proposed
model works better than the traditional state of the art model.
The results are shown in Table 1 justifying the technique
proposed in this paper.

Model Classification Accuracy (%)
RLS 100

NLMS 61.54
MFCC-VQ 76.92

Table I
CLASSIFICATION ACCURACY

K. Multiple models consideration

The limitation of this model is that it needs the speakers
to speak the same words in both the training and testing.
The filter coefficients are not adept at modeling the voice
variations and the phoneme variations. RLS could be expanded
to overcome this by probably considering multiple models for
a particular speaker and selecting filter coefficients in multiple
different regions. In the evaluation block, the models have to
be compared in parallel and the one which results in a lower

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

E
rr

or
 R

at
e

Error Curves

FAR
FRR

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

E
rr

or
 R

at
e

Error Curves

FAR
FRR

Figure 13. Error Curves of RLS (upper) and NLMS (lower)

prediction error needs to be selected. This has to be done for
every sample, but here, one also faces the problem of over
fitting the model.

V. CONCLUSION AND FUTURE WORK

In conclusion, speaker recognition can be extremely vital in
Biometric security and text dependence can be a reasonable
assumption to make. These can be used in ATMs where the
user could be asked to read out a particular word or a phrase.
The proposed methods of RLS in this avenue has not been
looked at before but here it is shown to generate good results,
even better than the traditionally used techniques such as
MFCC-VQ. The computation times are pretty low as well.
This should be enough motivation to carry this work forward.

In the future, the model could be expanded to incorporate
text Independence and needs to be evaluated on a wider
database. In addition, RLS/NLMS could also be used as a
denoiser in the pre processing block apart from merely being
used in classification. This would need a noise model to be
available though.

REFERENCES

[1] Simon Haykin. 1996. Adaptive Filter Theory (3rd Ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

[2] .M. H. Hayes, Statistical Digital Signal Processing and Modeling, John
Wiley & Sons, Inc

0 0.5 1 1.5 2 2.5 3

x 10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Scores

C
ou

nt

Normalized Distribution − System

Genuine Distribution − System
Impostor Distribution − System

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

Scores

C
ou

nt

Normalized Distribution − System

Genuine Distribution − System
Impostor Distribution − System

Figure 14. Score Distributions of RLS (upper) and NLMS (lower)

9

[3] Ilyas, M.Z, Univ. Malaysia Perlis (UniMAP), Arau, Malaysia – ‘Improv-
ing hybrid speaker verification in noisy environments using least mean-
square adaptive filters’

[4] Tadj, C, Ecole de Technol. Super., Montreal, Que., Canada, ‘Towards
robustness in speaker verification: enhancement and adaptation’

[5] Zulfiqar, A; Muhammad, A;ăăEnriquez, A.M.M, UoG, Gujrat, Pakistan,
‘A Speaker Identification System Using MFCC Features with VQ Tech-
nique’

[6] http://minhdo.ece.illinois.edu/teaching/speaker_recognition/

[7] Y. Linde, A. Buzo & R. Gray, “An algorithm for vector quantizer
design”,IEEE Transactions on Communications, Vol. 28, pp.84-95, 1980.

[8] Theodoros Giannakopoulos, Computational Intelligence Laboratory (CIL)
NCSR DEMOKRITOS, Greece, ‘A method for silence removal and
segmentation of speech signals, implemented in Matlab’

	I Introduction
	II Theory
	II-A RLS Equations
	II-B NLMS Equations
	II-C Mel Frequency Cepstral Coefficients - Vector Quantization (MFCC-VQ)

	III Implementation
	III-A Dataset
	III-B Algorithm:
	III-B1 RLS/NLMS
	III-B2 MFCC-VQ

	IV Results
	IV-A Silence Detection
	IV-B Discriminatory Features
	IV-C Filter weight trajectories
	IV-D Predictor responses
	IV-E Learning Curves
	IV-F Effect of step size and Forgetting Factor
	IV-G ROC Curves
	IV-H Error Curves
	IV-I Score distributions
	IV-J Classification Accuracy
	IV-K Multiple models consideration

	V Conclusion and Future work
	References

