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Abstract

In the present world, Nyquist-Shannon criterion poses a heavy burden on the hardware devices (ADCs et al.)

and adds to the computational woes. In a normal photograph, all the samples are processed only to throw

away 90% of them before you even see the picture. Compressive sensing (CS) seeks to alleviate this problem

by sensing only the required samples. It does this by taking into account the inherent sparsity in natural

signals. An often ignored truth is that almost upto 90% of signals in real world could be approximated as

sparse in some basis. Compressive Signal Processing (CSP) framework deals with problems where there is no

need to reconstruct the sparsely sampled signals but only an inference needs to be drawn . We extend this

concept into the �eld of cognitive radio where we detect the channel occupancy. It is observed that, accurate

results could be obtained by merely using detection without having to reconstruct the signal thus relaxing the

computation constraints. The advantage of this method is mainly due to the fact that most of the complexity

in CS lies in the reconstruction or the decoding stage. The model we have developed stands low in complexity

while at the same time providing high accuracy. Similarly, it is observed that many communication channels

encountered in practice tend to exhibit a sparse structure. Consequently, CS �nds its application in sparse

channel estimation. CSP has also been used to estimate the frequency response of AWGN channel. We

implement orthogonal matching pursuit and MMSE estimator in estimating the channel impulse response.

The model is observed to perform almost as well as a traditional channel estimation technique while using

lesser samples.



Chapter 1

Introduction

1.1 Shannon Nyquist theorem

The Shannon Nyquist theorem states that every band-limited signal can be recovered from its discretization

if its sampling rate is atleast two times its maximum frequency. Therefore according to this theorem there

is no way to recover the original baseband signal back if its sampled at a rate less then the Nyquist rate.

fs = 2 ∗W

where fs is the sampling frequency and W is the maximum frequency . We know that the spectrum of

a discrete signal is periodic in frequency domain having a period of fs. As seen from the above �gure if the

sampling frequency is less then W then there is aliasing in the spectrum causing loss of information.

1.2 General Transmission Scheme

Figure above shows the general transmission scheme used in communication.Sampling at nyquist rate we

get N samples. Using traditional compression techniques we retain only K samples and discard N-K , these

K samples are then transmitted and at the receiver from K samples the original signal is recovered. In the

following transmission scheme the main problem that can be observed is that if only K samples have to

transmitted whats the need to acquire initially N samples (N>�>K) and then discard N-K ; can in some way

the k samples be directly obtained and transmitted . The second issue with the above transmission scheme is

that decompression of a signal i.e reconstructing the original N length signal from the K samples acquired is

a very complex process and in most cases complete reconstruction is not needed and can be replaced with a

simple inference block which can be used to detect the required information. The third issue with the above

scheme is that in many situations such as channel estimation or cognitive radio, to name some the bandwidth

occupied is of the range of mega hertz therefore the ADCs have to work at two times these rates which is

practically not feasible. These factors provide us the motivation to use compressive signal processing with

1



1.2. GENERAL TRANSMISSION SCHEME CHAPTER 1. INTRODUCTION

Figure 1.1.1: Nyquist theorem

Figure 1.2.1: General Transmission Scheme

2 2



1.3. INTRODUCTION TO COMPRESSED SENSING CHAPTER 1. INTRODUCTION

its application in detection and estimation.

1.3 Introduction to Compressed Sensing

We are in the midst of a digital revolution that is driving the development and deployment of new kinds

of sensing systems with ever-increasing �delity and resolution. The theoretical foundation of this revolution

is the pioneering work of Kotelnikov, Nyquist, Shannon, and Whittaker on sampling continuous-time band-

limited signals.Their results demonstrate that signals introduction to Compressed Sensing images, videos,

and other data can be exactly recovered from a set of uniformly spaced samples taken at the so-called

Nyquist rate of twice the highest frequency present in the signal of interest. Capitalizing on this discovery,

much of signal processing has moved from the analog to the digital domain and ridden the wave of Moore's

law. Digitization has enabled the creation of sensing and processing systems that are more robust, �exible,

cheaper and, consequently, more widely used than their analog counterparts.

As a result of this success, the amount of data generated by sensing systems has grown from a trickle to a

torrent. Unfortunately, in many important and emerging applications, the resulting Nyquist rate is so high

that we end up with far too many samples. Alternatively, it may simply be too costly, or even physically

impossible, to build devices capable of acquiring samples at the necessary rate. Thus, despite extraordinary

advances in computational power, the acquisition and processing of signals in application areas such as

imaging, video, medical imaging, remote surveillance, spectroscopy, and genomic data analysis continues to

pose a tremendous challenge.

To address the logistical and computational challenges involved in dealing with such high-dimensional

data, we often depend on compression, which aims at �nding the most concise representation of a signal

that is able to achieve a target level of acceptable distortion. One of the most popular techniques for signal

compression is known as transform coding, and typically relies on �nding a basis or frame that provides sparse

or compressible representations for signals in a class of interest.By a sparse representation, we mean that

for a signal of length n, we can represent it with k n nonzero coe�cients; by a compressible representation,

we mean that the signal is well-approximated by a signal with only k nonzero coe�cients. Both sparse and

compressible signals can be represented with high �delity by preserving only the values and locations of the

largest coe�cients of the signal. This process is called sparse approximation, and forms the foundation of

transform coding schemes that exploit signal sparsity and compressibility, including the JPEG, JPEG2000,

MPEG, and MP3 standards.

Leveraging the concept of transform coding, compressive sensing (CS) has emerged as a new framework

for signal acquisition and sensor design. CS enables a potentially large reduction in the sampling and

computation costs for sensing signals that have a sparse or compressible representation. While the Nyquist-

3 3



1.3. INTRODUCTION TO COMPRESSED SENSING CHAPTER 1. INTRODUCTION

Shannon sampling theorem states that a certain minimum number of samples is required in order to perfectly

capture an arbitrary bandlimited signal, when the signal is sparse in a known basis we can vastly reduce the

number of measurements that need to be stored. Consequently, when sensing sparse signals we might be

able to do better than suggested by classical results. This is the fundamental idea behind CS: rather than

�rst sampling at a high rate and then compressing the sampled data, we would like to �nd ways to directly

sense the data in a compressed form i.e. at a lower sampling rate. The �eld of CS grew out of the work

of Candes, Romberg, and Tao and of Donoho, who showed that a �nite-dimensional signal having a sparse

or compressible representation can be recovered from a small set of linear, nonadaptive measurements.The

design of these measurement schemes and their extensions to practical data models and acquisition systems

are central challenges in the �eld of CS.

While this idea has only recently gained signi�cant attraction in the signal processing community, there

have been hints in this direction dating back as far as the eighteenth century. In 1795, Prony proposed

an algorithm for the estimation of the parameters associated with a small number of complex exponentials

sampled in the presence of noise. The next theoretical leap came in the early 1900's, when Caratheodory

showed that a positive linear combination of any k sinusoids is uniquely determined by its value at t = 0 and

at any other 2k points in time.This represents far fewer samples than the number of Nyquist rate samples

when k is small and the range of possible frequencies is large. In the 1990's, this work was generalized by

George, Gorodnitsky, and Rao, who studied sparsity in bio magnetic imaging and other contexts. Simul-

taneously, Bresler, Feng, and Venkataramani proposed a sampling scheme for acquiring certain classes of

signals consisting of k components with nonzero bandwidth (as opposed to pure sinusoids) under restric-

tions on the possible spectral supports, although exact recovery was not guaranteed in general. In the early

2000's Blu, Marziliano, and Vetterli developed sampling methods for certain classes of parametric signals

that are governed by only k parameters, showing that these signals can be sampled and recovered from just

2k samples.

A related problem focuses on recovery of a signal from partial observation of its Fourier transform.

Beurling proposed a method for extrapolating these observations to determine the entire Fourier transform

.One can show that if the signal consists of a �nite number of impulses, then Beurling's approach will correctly

recover the entire Fourier transform (of this non-bandlimited signal) from any su�ciently large piece of its

Fourier transform. His approach to �nd the signal with smallest l1 norm among all signals agreeing with the

acquired Fourier measurements bears a remarkable resemblance to some of the algorithms used in CS.

More recently, Candes, Romberg, Tao and Donoho showed that a signal having a sparse representation

can be recovered exactly from a small set of linear, nonadaptive measurements. This result suggests that

it may be possible to sense sparse signals by taking far fewer measurements, hence the name compressed

sensing. Note, however, that CS dears from classical sampling in three important respects. First, sampling

4 4



1.4. INTRODUCTION TO COMPRESSIVE SIGNAL PROCESSING (CSP)CHAPTER 1. INTRODUCTION

theory typically considers in�nite length, continuous-time signals. In contrast, CS is a mathematical theory

focused on measuring nite-dimensional vectors in Rn. Second, rather than sampling the signal at speci�c

points in time, CS systems typically acquire measurements in the form of inner products between the signal

and more general test functions. This is in fact in the spirit of modern sampling methods which similarly

acquire.signals by more general linear measurements . We will see throughout this report that randomness

often plays a key role in the design of these test functions. Thirdly, the two frameworks di�er in the manner in

which they deal with signal recovery, i.e., the problem of recovering the original signal from the compressive

measurements. In the Nyquist-Shannon framework, signal recovery is achieved through sinc interpolation

a linear process that requires little computation and has a simple interpretation. In CS, however, signal

recovery is typically achieved using highly nonlinear methods.

CS has already had notable impact on several applications. One example is medical imaging where it

has enabled speedups by a factor of seven in pediatric MRI while preserving diagnostic quality. Moreover,

the broad applicability of this framework has inspired research that extends the CS framework by proposing

practical implementations for numerous applications, including sub-Nyquist sampling systems, compressive

imaging architectures, and compressive sensor networks .

1.4 Introduction to Compressive Signal Processing (CSP)

Compressive Signal Processing is applying the CS concepts but does not include reconstruction of the signal

at the receiver and focuses on the fact that in many cases we replace the reconstruction stage by a detector

or estimator block. CSP thus combines CS concepts with basic detection and estimation theory therefore

avoiding reconstruction completely.

We have applied CS for the following scenarios:

1. Detect the presence of primary users in cognitive radio, therefore utilizing the spectrum holes in

transmitting secondary users in the absence of primary users.

2. Estimating the frequency response of a sparse channel without signal reconstruction

3. Estimation of Channel response of a system using algorithms such as OMP

1.5 Compressive Sensing Analogy

Given :

1. A bag with 100 marbles, nominal mass 10 grams each but one marble may be bad.

2. An electronic balance.

5 5



1.5. COMPRESSIVE SENSING ANALOGY CHAPTER 1. INTRODUCTION

How can we �nd the bad marble with the fewest weightings?

1.5.0.1 Divide and Conquer

1. Put half the marbles on the scale.

2. Decide if the bad marble is in that subset. Repeat with the subset that (might) contain the bad marble.

3. We �nd the bad marble in about log2(100) ≈ 7 weighings, a big improvement over the expected 50.5

weighings for a sequential approach.

4. If there are k ≥2 bad marbles (of unknown weights) the problem gets a lot harder.

5. The sequential approach takes an expected 101K
K+1 weighings if there are k bad marbles.

6. To do better we need to weigh subsets but how should be choose them?

7. Answer : Randomly!

1.5.0.2 Random Subsets

1. Number the marbles 1 to 100.

2. Choose a random subset of the marbles, each marble included with some probability (say 1/2).

3. Weigh the subset and record.

4. Repeat the last step a total of n times, say with n = 25.

5. Claim: If there are only a few bad marbles (say k = 3) and we weigh n = 25 subsets, we almost

certainly have enough information to identify the bad marbles. K

6. Let Xi denote the true deviation of the ith marble from nominal (10 grams). We expect Xi= 0 for

most i .

7. Suppose the marbles in the �rst random subset have indices i = i1, i2, i3....., im(m ≈ 50) and this subset

has mass a1.

8. Then Xi1 +Xi2 +Xi3 + .....+Xim = a1 − 10m

9. A similar equation holds for each of the other random subsets that we choose K

10. Let xi be our estimate of the true value Xi. We end up with n = 25 linear equations and N = 100

unknowns (the mass deviations), of the form φx = b; φ is the sensing matrix, matrix with φij = 1 if

the jth marble was included in the ith subset, and bj is the mass of the jth subset minus 10 times the

number of marbles in the subset K.
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1.5.0.3 Random Subset Example

1. For example, with N = 10 marbles and n = 3 weighings we might have φ =


1 0 0 1 1 0 1 0 0 0

0 0 1 1 1 1 0 1 0 0

0 1 1 1 1 0 0 0 1 1


2. If the �rst weighing involves marbles 1,4,5,7 the second involves marbles 3,4,5,6,8 the third involves

marbles 2,3,4,5,9,10

3. In the marble problem with N = 100, suppose that X13 = -0.3; X37 = 0.44; and X71 = -0.33, and all

other Xi = 0 (but we don't know this).

4. To estimate the marble masses, we choose random 25 subsets, each of size about 50, and weigh each.

5. We obtain a system x = φb: The matrix is 25 rows by 100 columns|there will be at least 75 free

variables.

6. Solving for the xi in any meaningful way looks hopeless.

1.5.0.4 Minimum l2 norm solution

A traditional approach to �solving" a consistent under determined system of equations Mx = b is to choose

that (unique) vectorx∗ with the properties that

1. Mx∗ = b (x∗actually satis�es the equations)

2. x∗has minimum l2 norm, that is, if x∗∗ 6= x∗; such that x∗∗ satis�es Mx∗∗ = b then ||x∗||2 < ||x∗∗||2

where ||x2|| = (
∑
i |xi|2)

1
2 is the l2 norm

3. Computing the l2 minimum solution is a standard calculus/matrix algebra problem. In the present

case we �nd:

• As seen from the above �gure l2 norm provides poor result

• Ideally since x is sparse l0 norm would give the perfect solution but this is NP hard

• Therefore we compromise and �nd the l1 norm solution that is �nd an x that minimizes ||x||1 =
∑N
i=1|xi|

• This is an easy linear programming problem

1. As seen from the �gure l1 provides an accurate solution.

2. The more weighings we do (for any �xed number of defective marbles) the better chance of success l1

minimization has.
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Figure 1.5.1: True Estimate & L1 Estimate

Figure 1.5.2: Marble Weighings
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Chapter 2

Compressive Sensing Concepts

2.1 Sparsity

Many natural signals have a concise representation when expressed in convenient basis

f ∈ RN

Let ψ = [ϕ1,ϕ2,...........,ψN ] be the orthonormal basis

f(t) =
∑
xiψi(t)

x coe�cients of f

In matrix notation f = ψx

If f is sparse we can discard all but s largest coe�cients,therefore

fs = ψxs( s largest coe�cients of f )

We have||f − fs||l2 = ||x− xs||l2;if x is sparse no information is lost on discarding N-S coe�cients.

Then signal is S sparse

De�nition of Sparsity : A signal

x = (xi)
n
i=1 (2.1.1)

∈ RN is called k sparse if

||x0||0 = #{i xi :6= 0} ≤ k (2.1.2)

∑
krepresents all possible k sparse vectors in a vector of length N
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Figure 2.1.1: Sparse Representation of Signal

Figure 2.1.2: Geometry of Sparse Signals
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Figure 2.1.3: Geometry of Projection

2.2 Under-determined System

An under determined system consists of few equations and lots of unknowns; characterized by a short and

fat matrix.Traditional methods of solving a consistent under determined system Ax = b are to choose an

unique vector x∗with the properties that :

1.Ax∗ = b (x∗satis�es the equation )

2.x∗has minimum l2norm , that is , x∗∗ 6= x∗,Ax∗∗ = b then ||x∗||2 < ||x∗∗||2

where ||x2|| = (
∑
i |xi|2)

1
2 is the l2norm

3.We know in CS that the vector x is sparse due to this factl2norm gives poor results.Therefore we should

Figure 2.2.1: Solution to an undetermined system using di�erent norms
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Figure 2.2.2: Under determined System

�nd a vector x that satis�es Ax = b and x has a few non-zero components as possible, that is, x minimizes

the ||x0||=|{xi : xi 6= 0}| this is known as minimizing the l0norm.This would provide the ideal solution to

our problem but this is NP hard and cannot be implemented

4.Therefore we go for the l1norm that is �nd an x that minimizes ||x||1 =
∑N
i=1|xi| �xed algorithms exist

for this (eg: orthogonal matching pursuit-OMP) which can be implemented to determine the solution.
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Figure 2.2.3: Geometry of l0norm
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Figure 2.2.4: Geometry of l2norm
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Figure 2.2.5: l1geometry
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Figure 2.2.6: l1Geometry
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Figure 2.3.1: Transformation from N to M dimension

2.3 Sensing Matrix and its Properties

Consider the system

φx = b (2.3.1)

φis known as the sensing matrix.An under determined system can be accurately solved using l1minimization

only if φsatis�es the Restricted Isometry Property (RIP) property.

2.3.0.5 Development of RIP

Let φbe a n by N matrix and suppose φx = b has a k sparse solution (2.3) (x=X is the only k sparse solution)

Now consider x=
∼
Xis another solution to the system (2.3) therefore

φ
∼
X = b (2.3.2)

(assume x=
∼
Xis another k sparse solution )

From 2.3 and 2.4 we see that φ(X −
∼
X) = 0; X −

∼
X=W ;

Therefore φW = 0; which means W lies in the null space of φ

But we know that X,
∼
Xare k sparse hence W is 2k sparse therefore W 6= 0lies N(φ)

Therefore if k sparse solutions are not unique N(φ) contains 2k sparse vectors

Hence if construct φsuch that N(φ) does not contain any 2k sparse vectors then we can be assured that

any k sparse solution we obtain will be unique.

φx 6= 0 for all 2k sparse vectors can be alternatively written as

c1||x||2 ≤ ||φX||2 ≡ c1 ≤ ||φu||2 (2.3.3)

for all 2k sparse unit vectors
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Figure 2.3.2: Projection

c2 ≥ ||φu| (2.3.4)

2 comes automatically

Combining (2.5) and (2.6) we get

c1 ≤ ||φu||2 ≤ c2 (2.3.5)

for all 2k sparse unit vectors

(2.7) Represents one form of the RIP property and if RIP for 2k sparse vectors holds good then all k

sparse vectors can be uniquely decoded.

Multiplying (2.7) by a constant does not change the solvability therefore 2.7 ∗ 2
c1+c2 RIP becomes

(1− δ) ≤ ||φu||2 ≤ (1 + δ) (2.3.6)

; where δ = c2−c1
c2+c1 and 0 ≤ δ ≤ 1.

Therefore RIP holds good for all 2k sparse vectors.

2.3.0.6 Achieving RIP

In the paper Signal Processing with Compressive Measurements by Mark Davenport, Petros Boufounos,

Michael Wakin, Richard Baraniuk it is shown that if the entries of the sensing matrix φ(M,N) are drawn

from an iid (independent and identically distributed) Gaussian random variable N(0, 1
M ) that is having a

mean 0 and variance 1
M then φ satis�es the RIP property for all 2k sparse vectors.
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Chapter 3

Detection

3.1 General Problem

In many situations at the receiver complete reconstruction of signal is not required and instead of decom-

pression we can simply implement a detection block.

Let us examine the the detection problem to distinguish between two hypothesis :

H0 : y = φn (3.1.1)

H1 : y = φ(s+ n) (3.1.2)

where n ∼ N(0, σ2IN ) is iid Gaussian noise

φis known �xed measurement matrix

s ∈ RN is known signal to be detected

Our task is to decide between H0 andH1 accordingly

3.2 Development of the Compressive Detector

PF= Pr(H1is chosen when H0true )

PD =Pr( H1is choose when H1true ) denote the false alarm and detection rate respectively.

The Neymann-Pearson(NP) detector is the decision rule that maximizes PDsubject to the constraint that

PF ≤ α.H0and H1hypothesis have the following density functions

f0(y) =
exp(− 1

2y
T (σ2φφT )−1y)

|σ2φφT | 12 (2π)
M
2

(3.2.1)

19



3.2. DEVELOPMENT OF THE COMPRESSIVE DETECTOR CHAPTER 3. DETECTION

f1(y) =
exp(− 1

2 (y − φs)T (σ2φφT )−1(y − φs))
|σ2φφT | 12 (2π)

(3.2.2)

The NP optimal decision rule is to compare the ratio f1(y)
f0(y) to a threshold η which is the likelihood ratio

test

Λ(y) ==
f1(y)

f0(y)

≥H1

≤H0
η (3.2.3)

η is chosen such that

PF =

∞̂

Λ(y)>η

f0(y)dy = α (3.2.4)

Simplifying (3.5) and taking logarithm we obtain an equivalent test as

yT (φφT )−1φs
≥H1

≤H0
σ2 log(η) +

1

2
sTφT (φφT )−1φs := γ (3.2.5)

The compressive detector is de�ned as

t := yT (φφT )−1φs (3.2.6)

It can be Shown that t is the su�cient statistic for our detection problem.t contains the information

relevant to distinguish between the 2 hypothesis.

we now de�ne PφT = φT (φφT )−1φas the orthogonal projection onto R(φT ) i.e the row space of φ, since

PφT = PTφT therefore

sTφT (φφT )−1φs = ||PφT s||2 (3.2.7)

Using (3.9) we can write

t ∼N(0, σ2||PφT s||2) under H0

t ∼ N(||PφT s||2,σ2||PφT s||2) under H1

PF = P (t > γ|H0) = Q(
γ

σ||PφT s||2
) (3.2.8)

PD = P (t > γ|H1) = Q(
γ − ||PφT s||2)

σ||PφT s||2
) (3.2.9)

where Q(z) =
´∞
z
exp(−u2/2)du

To determine the threshold, we set PF = α and thus
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γ = σ||PφT s||2Q−1(α) (3.2.10)

resulting in

PD(α) = Q(Q−1(α)− ||PφT s||2/σ) (3.2.11)

the SNR := ||s||2
σ2

φ(M,N) is the matrix where M is the number of compressive measurements taken and N is the total

length of vector s ; the probability of detection on terms of M,N and SNR can be written as

PD(α) ≈ Q(Q−1(α)−
√
M/N

√
SNR) (3.2.12)
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3.3 Compressive Detector Results

3.3.0.7 E�ect of M on Pd

Figure 3.3.1: Pd vs α

The settings for the above simulation were as follows:

Number of Samples 'N' = 1000

Sparsity 'k' = 25

1. M- Number of Measurements

2. Pd- Probability of Detection

3. α- Probability of False Alarm

4. N=1000 ( signal length ) ; k=25 (sparsity)
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3.3.0.8 E�ect of M on Pd at various SNR

Figure 3.3.2: Pd vs M
N

The settings for the above simulation were as follows:
Number of Samples 'N' = 500

Sparsity of signal 'k' = 25

α = 0.1

1. M- Number of Measurements

2. Pd-Probability of Detection

3. α=0.1

4. N=500 ( signal length ) ; k=25 (sparsity)
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Chapter 4

Detection in Cognitive Radio

4.1 Introduction

A Cognitive Radio (CR) is a software de�ned radio(SDR) that additionally senses its environment ,tracks

changes and responds accordingly. It is basically a technique for e�cient spectral usage.

There are two kinds of users with reference to cognitive radio:

• Primary users: Users who have legacy rights/ higher priority on the usage of a speci�c part of the

spectrum.

• Secondary users: These are users who make use of the spectrum when the primary users are not

using the spectrum or these users use the spectrum in such a way as to not cause any interference to

the higher priority primary users.

In order to detect the presence of the primary user, spectrum sensing is performed. It is the process of

identifying occupancy in all dimensions of the spectrum space.The idea of CR is based on the observation

that at certain times, most of the licensed spectrum is not used by the licensed users Secondary (unlicensed)

users detect the spectrum holes (unoccupied spectrum) and utilize the spectrum at the absence of the primary

(licensed) users.

As shown above [10], making e�cient use of the spectrum holes is the basic idea of cognitive radio.

4.2 Application of CS in CR

Current Cognitive Radios are limited in their operational bandwidth by existing hardware devices, much of

the extensive theoretical work on spectrum sensing is impossible to realize in practice over a wide frequency

band. To alleviate the sampling bottleneck, we use Compressive Sensing (CS), which allows for the acquisition

of sparse signals at sub-Nyquist rates, in conjunction with Cognitive Radio(CR). We have sequentially
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Figure 4.1.1: Spectrum hole

Figure 4.2.1: Sparsity of channels in Cognitive Radio

combined the two techniques: �rst acquiring compressed samples, then performing CR spectrum sensing on

the compressive signal.

As we know, compressive sensing makes use of sparsity for recovering data. In the �gure shown above [9],

there are frequencies which are heavily used and also frequencies which are not used. Hence this could be

considered as a sparse structure . It is this sparsity that is made use of while applying compressive sensing

in cognitive radio.

While CS alleviates the bandwidth constraints imposed by front-end ADCs, the resulting increase in

computation/complexity is non-trivial, especially in a power-constrained mobile CR. In addition, the com-

putation time introduces signi�cant delay into the spectrum sensing operation. Our key observation is that

the CR does not have to reconstruct the entire signal because it is only interested in detecting the presence of

Primary Users The fundamental task of a CR is not to analyze the entire signal, rather it is to estimate the

presence of Primary Users, thus if we can directly estimate the Primary User signals from the compressive

measurements, the reconstruction stage can be completely eliminated. Although, using CS in CR results in

an increase in the computation time and complexity, we relax these by just detecting the signal instead of

estimating. This results in a signi�cant reduction in complexity.
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4.3 Spectrum sensing techniques

The various sensing techniques are as follows:

1. Energy detector based sensing

2. Waveform based sensing

3. Cyclostationary based sensing

4. Matched �ltering based sensing

5. Radio Identi�cation based sensing

4.3.0.9 Energy detector based sensing

Energy detector based approach, also known as radiome-try or periodogram, is the most common way of

spectrum sensing because of its low computational and implementation complexities . The signal is detected

by comparing the output of the energy detector with a threshold which depends on the noise �oor. Some

of the challenges with energy detector based sensing include selection of the threshold for detecting primary

users, inability to di�erentiate interference from primary users and noise, and poor performance under low

signal-to-noise ratio (SNR) values.

Let us assume that the received signal has the following simple form:

y(n) = s(n) + w(n)

where s(n) is the signal to be detected, w(n) is the additive white Gaussian noise (AWGN) sample, and

n is the sample index. Note that s(n) = 0 when there is no transmission by primary user. The decision

metric for the energy detector can be written as

M =
∑n=N
n=0 |y(n)|2

where N is the size of the observation vector. The decision on the occupancy of a band can be obtained

by comparing the decision metric M against a �xed threshold λ . This is equivalent to distinguishing between

the following two hypotheses:

H0 : y(n) = w(n)

H1 : y(n) = s(n) + w(n).

The performance of the detection algorithm can be summarized with two probabilities: probability of

detection PD and probability of false alarm PF . PD is the probability of detecting a signal on the considered

frequency when it truly is present. Thus, a large detection probability is desired. It can be formulated as

PD = Pr(M > λ|H1). PF is the probability that the test incorrectly decides that the considered

frequency is occupied when it actually is not, and it can be written as
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PF = Pr(M > λ|H0).PF should be kept as small as possible in order to prevent under utilization of

transmission opportunities. The decision threshold λ can be selected for �nding an optimum balance between

PD and PF . However, this requires knowledge of noise and detected signal powers. The noise power can

be estimated, but the signal power is di�cult to estimate as it changes depending on ongoing transmission

characteristics and the distance between the cognitive radio and primary user. In practice, the threshold is

chosen to obtain a certain false alarm rate. Hence, knowledge of noise variance is su�cient for selection of

a threshold.

4.3.0.10 Waveform based sensing :

Known patterns are usually utilized in wireless systems to assist synchronization or for other purposes.

Such patterns include preambles, mid-ambles, regularly transmitted pilot patterns, spreading sequences etc.

In the presence of a known pattern, sensing can be performed by correlating the received signal with a

known copy of itself. This method is only applicable to systems with known signal patterns, and it is

termed as waveform-based sensing or coherent sensing. It has been shown that waveform-based sensing

outperforms energy detector based sensing in reliability and convergence time. Furthermore, it is shown that

the performance of the sensing algorithm increases as the length of the known signal pattern increases.

4.3.0.11 Cyclostationary based sensing:

Cyclostationarity feature detection is a method for detecting primary user transmissions by exploiting the

cyclostationarity features of the received signals. Cyclostationary features are caused by the periodicity in

the signal or in its statistics like mean and auto-correlation or they can be intentionally induced to assist

spectrum sensing. Instead of power spectral density (PSD), cyclic correlation function is used for detecting

signals present in a given spectrum. The cyclostationarity based detection algorithms can di�erentiate noise

from primary users signals. This is a result of the fact that noise is wide-sense stationary (WSS) with no

correlation while modulated signals are cyclo-stationary with spectral correlation due to the redundancy of

signal periodicities. Furthermore, cyclostationarity can be used for distinguishing among di�erent types of

transmissions and primary users.

4.3.0.12 Matched �ltering based sensing:

Matched �ltering is known as the optimum method for detection of primary users when the transmitted signal

is known. The main advantage of matched �ltering is the short time to achieve a certain probability of false

alarm or probability of miss-detection as compared to other methods that are discussed in this section. In

fact, the required number of samples grows as O(1/SN R) for a target probability of false alarm at low SNRs

for matched-�ltering. However, matched �ltering requires cognitive radio to demodulate received signals.
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Figure 4.3.1: Comparison of sensing methods

Hence, it requires perfect knowledge of the primary users signaling features such as bandwidth, operating

frequency, modulation type and order, pulse shaping, and frame format. Moreover, since cognitive radio

needs receivers for all signal types, the implementation complexity of sensing unit is impractically large.

Another disadvantage of match �ltering is large power consumption as various receiver algorithms need to

be executed for detection.

4.3.0.13 Radio identi�cation based sensing:

Matched �ltering is known as the optimum method for detection of primary users when the transmitted signal

is known. The main advantage of matched �ltering is the short time to achieve a certain probability of false

alarm or probability of miss-detection as compared to other methods that are discussed in this section. In

fact, the required number of samples grows as O(1/SN R) for a target probability of false alarm at low SNRs

for matched-�ltering. However, matched �ltering requires cognitive radio to demodulate received signals.

Hence, it requires perfect knowledge of the primary users signaling features such as bandwidth, operating

frequency, modulation type and order, pulse shaping, and frame format. Moreover, since cognitive radio

needs receivers for all signal types, the implementation complexity of sensing unit is impractically large.

Another disadvantage of match �ltering is large power consumption as various receiver algorithms need to

be executed for detection.

On comparison, we see that Waveform-based sensing is more robust than energy detector and cyclo-

stationarity based methods. Energy detector based sensing is limited but complexity is minimum. Also,

Cyclostationary based methods perform worse than energy detector based sensing methods when the noise

is stationary.
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4.4 Problems in Cognitive Radio:

The basic problems in Cognitive Radio are as follows:

1. Hardware constraints

2. Hidden primary user problem

3. Detecting spread spectrum primary users

4. Sensing duration and frequency

5. Security

4.4.0.14 Hardware constraints:

Spectrum sensing for cognitive radio applications requires high sampling rate, high resolution analog to digital

converters (ADCs) with large dynamic range, and high speed signal processors. Noise variance estimation

techniques have been popularly used for optimal receiver designs like channel estimation, soft information

generation etc., as well as for improved hand-o�, power control, and channel allocation techniques The

noise/interference estimation problem is easier for these purposes as receivers are tuned to receive signals

that are transmitted over a desired bandwidth. Moreover, receivers are capable of processing the narrow

band base band signals with reasonably low complexity and low power processors. However, in cognitive

radio, terminals are required to process transmission over a much wider band for utilizing any opportunity.

Hence, cognitive radio should be able to capture and analyze a relatively larger band for identifying spectrum

op-port unities. The large operating bandwidths impose additional requirements on the radio frequencies

(RF) components such as antennas and power ampli�ers as well. These components should be able to operate

over a range of wide operating frequencies. Furthermore, high speed processing units (DSPs or FPGAs) are

needed for performing computationally demanding signal processing tasks with relatively low delay.
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4.4.0.15 Hidden primary user problem:

The hidden primary user problem is similar to the hidden node problem in Carrier Sense Multiple

Accessing (CSMA). It can be caused by many factors including severe multipath fading or shadowing observed

by secondary users while scanning for primary users transmissions. Fig. 1.4 shows an illustration of a hidden

node problem where the dashed circles show the operating ranges of the primary user and the cognitive

radio device. Here, cognitive radio device causes unwanted interference to the primary user (receiver) as the

primary transmitters signal could not be detected because of the locations of devices. Cooperative sensing

is proposed in the literature for handling hidden primary user problem.

4.4.0.16 Detecting spread spectrum primary users:

For commercially available devices, there are two main types of technologies: �xed frequency and spread

spectrum. The two major spread spectrum technologies are frequency-hoping spread-spectrum (FHSS) and

direct-sequence spread-spectrum (DSSS). Fixed frequency devices operate at a single frequency or channel.

An example to such systems is IEEE 802.11a/g based WLAN. FHSS devices change their operational fre-

quencies dynamically to multiple narrow band channels. This is known as hopping and performed according

to a sequence that is known by both transmitter and receiver. DSSS devices are similar to FHSS devices,

however, they use a single band to spread their energy.

Primary users that use spread spectrum signaling are di�cult to detect as the power of the primary user

is distributed over a wide frequency range even though the actual information bandwidth is much narrower.

This problem can be partially avoided if the hopping pattern is known and perfect synchronization to the

signal can be achieved as discussed. However, it is not straightforward to design algorithms that can do the

estimation in code dimension.
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4.4.0.17 Sensing duration and frequency:

Primary users can claim their frequency bands anytime while cognitive radio is operating on their bands. In

order to prevent interference to and from primary license owners, cognitive radio should be able to identify

the presence of primary users as quickly as possible and should vacate the band immediately. Hence, sensing

methods should be able to identify the presence of primary users within a certain duration. This requirement

poses a limit on the performance of sensing algorithm and creates a challenge for cognitive radio design.

4.4.0.18 Security:

In cognitive radio, a sel�sh or malicious user can modify its air interface to mimic a primary user. Hence,

it can mislead the spectrum sensing performed by legitimate primary users. Such a behavior or attack is

termed as primary user emulation (PUE) attack.Here, the position of the transmitter is used for identifying

an attacker. A more challenging problem is to develop e�ective countermeasures once an attack is identi�ed.

Public key encryption based primary user identi�cation could be used to prevent secondary users masquerad-

ing as primary users. Legitimate primary users are required to transmit an encrypted value (signature) along

with their transmissions which is generated using a private key. This signature is, then, used for validating

the primary user. This method, however, can only be used with digital modulations. Furthermore, secondary

users should have the capability to synchronize and demodulate primary users signal.

4.5 Our Algorithm for Cognitive Radio Sensing Via CS:

Consider a scenario with 'n' channels. Let N be the number of samples of the received signal at

nyquist rate out of which we take M measurements using compressive sensing, where M<�<N.

1. We �rst generate a signal bank 's'. This contains signal templates of all possible cases when only one

channel is transmitting and the rest are not. The Fourier transform of these templates is stored in 's'.

2. The Fourier transform of the received signal 'y' is found using FFT() function

3. The sensing matrix (Phi) is generated using the normrnd() function of mat lab

4. The received signal is sampled using the sensing matrix Y = Φy where Φis an MxN matrix;

5. We then �nd the test statistic using t := Y T (ΦΦT )−1Φsi ;where siis i
th channel signal template

6. We also de�ne an ideal statistic as tideal := sTi ΦT (ΦΦT )−1Φsi ;where siis i
th channel signal template

7. We then decide that a primary user is present if t lies within 50% of tideal by observation.
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4.6.0.19 Comparison of CS Detector with Energy Detector

Figure 4.6.1: Error vs SNR

The settings for the above simulation were as follows:

Number of Samples Measured = 400

Total Number of Samples for CS-Detector = 512

Number of Channels = 20

At Lower SNR, our CS-detector outperforms energy detector signi�cantly. At about 12 dB the perfomance
converges

4.6 Energy detector

Consider a scenario with 'n' channels. The number of samples taken is N. Let received signal

be Y.

1. We �nd Fourier transform of received signal Y(ω) using FFT function.

2. The power spectrum is obtained using |Y(ω)|2.

3. A suitable threshold is arrived at from observation.

4. If |Y(ω)|2 is greater than the threshold chosen, we say primary user is present at that particular

frequency. Secondary user is simulated in the remaining frequencies.

5. Error rates and detection rates are noted.
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4.7 Results- Cognitive Radio

In this section we have tabulated the results for Cognitive Radio. We have compared our results with that

of cognitive radio implementation using Orthogonal Matching Pursuit and we have shown that our method

is far superior both in terms of accuracy and time taken. In Cognitive Radio both these criteria are very

important as they both are critical for the Primary User to function e�ciently. Minimum accuracy and

minimum time taken to detect the presence of Primary user will cause minimum interference to the Primary

user.
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4.7.0.20 Snapshot of Our Simulation

This section contains the snapshots of our simulation:

Figure 4.7.1: Simulation Snapshot

The settings for the above simulation were as follows:

SNR = 15 dB

Number of Samples Measured = 200

Total Number of Samples = 512

Number of Channels = 5

1. The blue lines indicate the frequency response of the Primary User that have been detected by our
CS-Detector. The green are the transmission made by the Secondary user depending on the detection
made.
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4.7.0.21 Error Count

In this part we have shown the comparison of Error Count for two methods: CS-Detector and OMP-
Estimator:

Figure 4.7.2: Errors Vs Measurements: CS-Detector Vs OMP Estimator

The settings for the above simulation were as follows:

SNR = 15 dB

Number of Channels = 5

Total Number of Samples: 512
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Figure 4.7.3: Error Vs SNR (dB) : CS-Detector vs OMP Estimator

The settings for the above simulation were as follows:

SNR = 15 dB

Number of Samples Measured = 80

Total Number of Samples = 512

Number of Channels = 5

1. Note: The error count is taken over 1000 transmissions of the Cognitive radio

2. The abrupt changes between the error counts of OMP and CS-Detector can be attributed to the random
nature of the sensing matrix φ. Sometimes it will contain the required basis to capture the non-zero
elements of the signals while sometimes it may miss out a few. But the signi�cant trend that we have
to observe is that the number of errors for OMP is always greater than the number for CS-Detector.
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4.7.0.22 Time Taken

In this part we have shown the comparison of Error Count for two methods: CS-Detector and OMP-
Estimator:

Figure 4.7.4: Time Vs Measurements: CS-Detector Vs OMP Estimator

The settings for the above simulation were as follows:

SNR = 15 dB

Total Number of Samples = 512

Number of Channels = 5

1. We observe that lower number of Measurements the performance of CS-Detector is far superior to that

of OMP-Estimator. As the number of Measurements increases and reaches the Nyquist Criterion the

Time Taken too increases
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Figure 4.7.5: Time Vs Measurements: CS-Detector Vs OMP Estimator

The settings for the above simulation were as follows:

SNR = 20 dB

Number of Samples Measured = 200

Total Number of Samples = 512

Number of Channels = 5

1. Here we see that as the number of Channels that we seek to detect increases the time taken by OMP
increases sharply while that of CS-Detector remains nearly the same. This is great advantage in
practical purposes where we may need to detect the presence of a large number of primary users.
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4.7.0.23 Performance of our CS-Detector at various settings

Figure 4.7.6: Number of Errors Vs Number of Measurements

The settings for the above simulation were as follows:

SNR = 4 dB

Total Number of Samples = 512

Number of Channels = 5
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Figure 4.7.7: Number of Errors Vs Number of Measurements

The settings for the above simulation were as follows:

SNR = 4 dB

Total Number of Samples = 512

Number of Channels = 8
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Figure 4.7.8: Time Taken Vs Number of Measurements
SNR = 4 dB

Total Number of Samples = 512

Number of Channels = 4
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Figure 4.7.9: Time Taken Vs Number of Measurements
SNR = 4 dB

Total Number of Samples = 512

Number of Channels = 8

4.7.0.24 Orthogonal and Non-Orthogonal Carrier Frequencies Over Given Bandwidth

1. CR performance was compared for both orthogonal and non-orthogonal carrier frequencies.

2. No. of Channels=4

3. SNR=3

4. M=100

Figure 4.7.10: No. of errors: Orthogonal vs Non.Orthogonal per 100 Transmissions.

• It is seen that the number of errors increase signi�cantly for non-orthogonal center frequencies
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Chapter 5

Estimation

5.1 General Estimation Theory

While most of the signal processing applications can be solved using detection and classi�cation in some

cases we cannot reduce our task to selecting among �nite set of hypothesis rather we are interested in

estimating some function of the data.We focus on estimating a linear function of the data from compressive

measurements.

Let y = φs and we wish to estimate < l, s >from the measurements y,where l ∈ RNis a �xed test

vector.In the case where φis a random matrix,a natural estimator is essentially the same as the compressive

detector.Suppose we would like to estimate a set of L linear functions from y.One potential estimator for

this scenario,which is a simple generalization of the compressive detector (3.8) is given by

N

M
∗ yT (φφT )−1φli (5.1.1)

for i=1,2,....,|L|

Equation (5.1) represents the orthogonalized estimator

Let us consider another estimator ; the most common one given by

< y, φli > (5.1.2)

Equation (5.2) is called a direct estimator since it eliminates the orthogonalization step by directly

correlating the compressive measurements with φli.
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5.2 Commonly Used Estimators

Figure 5.2.1: Block diagram of a noise corrupted signal scenario

5.3 Least Squares Estimator

The method of least squares is about estimating parameters by minimizing the squared discrepancies between

observed data, on the one hand, and their expected values on the other. Least squares corresponds to the

maximum likelihood criterion if the experimental errors have a normal distribution and can also be derived

as a method of moments estimator.

Consider the block diagram 2.1 and the below conditions:

H(Z) =
∑l=L−1
l=0 h(l) z−l L length FIR �lter

x[n] : x[0].....x[M-1] �� M length sequence

h[n]: h[0]......h[L-1] �� Filter coe�cients

y[n] = h[n] * x[n] + w[n]



Y [0]

.

.

.

.

.

Y [M + L− 1]



=



x[0] 0 0 0 0

x[1] x[0] 0 0 0

. . x[0] 0 0

. . . . .

x[M − 1] . . . x[0]

0 x[M − 1] . . .

0 0 . . x[M − 1]





h[0]

.

.

.

.

.

h[L− 1]



+



w[0]

.

.

.

.

.

w[M + L− 1]



(5.3.1)

Y=XH+W where X is a toeplitz matrix

Estimate of H : ĥ = (XTX)−1XTY
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5.4 MMSE Estimator (Wiener �lter)

Minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square

error (MSE) of the �tted values of a dependent variable, which is a common measure of estimator quality.

Consider the block diagram 2.1 and the below conditions:

H(Z) =
∑l=L−1
l=0 h(l) z−l L length FIR �lter

x[n] : x[0].....x[M-1] �� M length sequence

h[n]: h[0]......h[L-1] �� Filter coe�cients

y[n] = h[n] * x[n] + w[n]

Y [0]

.

.

.

.

.

Y [M + L− 1]



=



x[0] 0 0 0 0

x[1] x[0] 0 0 0

. . x[0] 0 0

. . . . .

x[M − 1] . . . x[0]

0 x[M − 1] . . .

0 0 . . x[M − 1]





h[0]

.

.

.

.

.

h[L− 1]



+



w[0]

.

.

.

.

.

w[M + L− 1]


Y=XH+W where X is a toeplitz matrix

Estimate of H : ĥ = (XTX+σ2I)−1XTY where σ2is the noise variance
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5.5 Application of Compressive Estimator to Determine the mean

of a Signal

• We use the compressive estimator to �nd the mean of a signal s

• The signal s is a length N=1000 vector with entries distributed according to a Gaussian Distribution

with unit mean and variance.

• l is chosen to be l = [ 1
N

1
N .......

1
N ]T to compute the mean of s.

• The average estimation error for an orthogonalized estimator is given by

|(N/M) ∗ sTφTφl− < l, s > |/||s||2||l||2 (5.5.1)

• The average estimation error for the direct estimator is given by

| < φl, φs > − < l, s > |/||s||2||l||2 (5.5.2)

• The error for both the estimators is computed for varying (M/N) values.
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Chapter 6

Channel Estimation

6.1 Introduction

Channel Estimation is an essential component in radar and data communication.In multipath time varying

channel it is necessary to estimate the time-shift and the scale-shift of the multipaths.With recent advances

in sparse estimation (Compressive Sensing ) new estimation techniques have emerged which give better

performances then the traditional techniques.We concentrate on the estimation of multipath channels with

sparse impulse responses. Such channels are encountered in many applications such as high de�nition

television (HDTV), communication near a hilly terrain, and underwater acoustic communication near the

surf zone.Due to the sparse impulse responses of these channels, traditional estimation techniques such

as least-squares result in over-parameterization and thus poor performance of the estimator.Fortunately,

the structure of these channels can be exploited using sparse reconstruction algorithms such as Matching

Pursuit (MP).We solve the channel estimation problem using the Orthogonal Matching Pursuit algorithm

(OMP).The Channel can be sparse in the frequency domain and hence have a sparse frequency response, if

this is the case (13) can be used to estimate the frequency response.

6.2 Application of Compressive Estimator in determining the Fre-

quency Response

The Estimator in (5.1) can be extended for analysis of estimation beyond the estimation of scalar-valued

linear functions to more general linear operators.Any �nite-dimensional linear operator on a signal x ∈ RNcan

be represented as a matrix multiplication Lx where L has size ZxN for some Z.Decomposing L in terms of

its rows,this computation can be expressed as
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Figure 6.1.1: Sparse Under Water Channel

Lx =



lT1

lT2

.

.

.

lTZ


x =



< l1, x >

< l2, x >

.

.

.

< lZ , x >


(6.2.1)

We can note the following points

1. If the channel frequency response is sparse we can apply (6.1) in determining it.

2. The estimator �nds the mean of a signal therefore the test vectors li have to be chosen such that the

mean value of the signal at each frequency is found out thus giving us the frequency response

3. This can be achieved if L is taken as the DFT matrix.

4. Each row of the DFT matrix will select a particular row, the estimator will then �nd the mean of the

signal at the frequency value selected by the DFT matrix therefore giving the frequency response.

6.3 Algorithm

1. Generate a random signal X

2. Take the N point FFT of X ; where N is the length of the signal
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6.4 Frequency Response Results

6.4.0.25 Simulation Snapshots

Figure 6.4.1: Actual Frequency Response
SNR=15dB

No. of Measurements=200

No. of Samples=512

3. Perform compressive Sensing on X ; Y = φX ; where φ is the sensing matrix and Y is the measurements

obtained.

4. The test vector matrix is taken as l = DFT (N) ; which is the N point DFT matrix

5. From (5.1) and (6.1) Xestimate = N
M ∗ Y

T (φφT )−1 ∗ φl ; where M is the no. of measurements

6. Xestimate gives the estimated frequency response.
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Figure 6.4.2: Estimated Frequency Response
SNR=15dB

No. of Measurements=200

Total no. of Samples=512
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6.4.0.26 Errors vs measurements

Figure 6.4.3: No.of Errors vs No. of Measurements
SNR=15 dB

Total Number of Measurements=512

51 51



6.3. ALGORITHM CHAPTER 6. CHANNEL ESTIMATION

6.4.0.27 Errors vs SNR

Figure 6.4.4: No.of errors vs SNR
No. of Measurements=15 dB

Total Number of Measurements=512

The variations observed in the middle are due to the random nature of the sensing matrix.
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Chapter 7

Orthogonal Matching Pursuit

7.1 Introduction

Orthogonal matching pursuit (OMP) is an algorithm for the recovery of a high-dimensional sparse signal

based on a small number of noisy linear measurements. OMP is an iterative greedy algorithm that selects

at each step the column which is most correlated with the current residuals.It can be shown that under

conditions on the mutual incoherence and the minimum magnitude of the nonzero components of the signal,

the support of the signal can be recovered exactly by the OMP algorithm with high probability.

Recovery of a high-dimensional sparse signal based on a small number of linear measurements, possibly

corrupted by noise, is a fundamental problem in signal processing. Speci�cally one considers the following

model:

Y = φX + η (7.1.1)

where the observation Y εRN, the matrix φεRNXP, and the measurement errors εεRN. Suppose φ =

(φ1, φ2, · · · , φP ) where φi denotes the ith column of φ . We shall assume that the columns of φ are normalized,

i.e. ‖φi‖2 = 1 for i = 1; 2;· · · ; p. The goal is to reconstruct the unknown vector XεRP based on Y and φ. A

setting that is of signi�cant interest and challenge is that the dimension p of the signal is much larger than

the number of measurements n.

For a vector Xε(X1, X2, · · · , XP ), the support of X is de�ned to be the set supp(X) = {i;Xi 6= 0} and

X is said to be k-sparse if | supp(X) |6 k. A widely used framework for sparse signal recovery is the Mutual

Incoherence Property (MIP) introduced in Donoho and Huo (2001). The mutual incoherence is de�ned by

µ = max
i6=j
|< φi, φj >| (7.1.2)
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The MIP requires the mutual incoherence µ to be small. Other conditions used in the compressive sensing

literature include the Restricted Isometry Property (RIP) and Exact Recovery Condition (ERC).In contrast

to the MIP, these conditions are not computationally feasible to verify for a given matrix φ. We consider

the orthogonal matching pursuit (OMP) algorithm for the recovery of the support of the k-sparse signal X

under the above model

.OMP is an iterative greedy algorithm that selects at each step the column of φ which is most correlated

with the current residuals. This column is then added into the set of selected columns. The algorithm

updates the residuals by projecting the observation Y onto the linear subspace spanned by the columns that

have already been selected, and the algorithm then iterates. Compared with other alternative methods, a

major advantage of the OMP is its simplicity and fast implementation.

In particular, support recovery has been considered in the noiseless case by Tropp (2004), where it was

shown that µ < 1
2k−1 is a su�cient condition for recovering a k-sparse X exactly in the noiseless case. We

however consider the OMP algorithm in the general setting where noise is present. Note that the residuals

after each step in the OMP algorithm are orthogonal to all the selected columns of φ, so no column is

selected twice and the set of selected columns grows at each step.One of the key components of an iterative

procedure like OMP is the stopping rule. Speci�c stopping rules are given for the OMP algorithm in both

bounded noise and Gaussian noise cases. The algorithm is then fully data-driven. It can be shown that

under the MIP condition µ < 1
2k−1 and a condition on the minimum magnitude of the nonzero coordinates

of X, the support of X can be recovered exactly by the OMP algorithm in the bounded noise cases and with

high probability in the Gaussian case.In fact all the main results hold under the Exact Recovery Condition

(ERC).

In many applications, the focus is often on identifying signi�cant components, i.e., coordinates of X with

large magnitude, instead of the often too ambitious goal of recovering the whole support of X exactly. In our

simulation, we also consider the problem of identifying large coordinates of X in the case where some of the

nonzero coordinates are possibly small. It is shown that in this case the OMP algorithm will still select all

the most important components before possibly selecting incorrect ones. In addition, with modi�ed stopping

rules, the OMP algorithm can ensure that no zero components are selected.

7.2 The OMP Algorithm

In this section we give a detailed description of the orthogonal matching pursuit (OMP) algorithm. We

assume that the columns of φ are normalized so that ‖φi‖2= 1 for i = 1; 2; · · · ; p. For any subset

S⊆ {1, 2, · · · , p} , denote by φ(S) a sub matrix of φ consisting of the columns φi with i ε S. In our report

we shall also call columns of φ variables by following the convention in statistics. Thus we use φi to denote

the both ith column of φ and the ith variable of the model. Following the same convention, we shall call
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φi a correct variable if the corresponding Xi 6= 0 and call φi an incorrect variable otherwise. With slight

abuse of notation, we shall use φ(S) to denote both the subset of columns of φ with indices in S and the

corresponding sub matrix of φ.

The OMP algorithm can be stated as follows.

• Step 1: Initialize the residual r0 = y and initialize the set of selected variable φ(c0) =φ ;. Let iteration

counter i = 1.

• Step 2: Find the variable φti that solves the maximization problem maxt |φ
′

tri−1| and add the variable

φti to the set of selected variables. Update ci = ci−1U{ti}

• :Step 3: Let Pi = φ(ci)(φ(ci)
tφ(ci))

−1φ(ci)
t denote the projection onto the linear space spanned by

the elements of φ(ci). Update ri = (I - Pi)y.

• Step 4: If the stopping condition is achieved, stop the algorithm. Otherwise, set i = i + 1 and return

to Step 2.

The OMP is a stepwise forward selection algorithm and is easy to implement. A key component of OMP is

the stopping rule which depends on the noise structure. In the noiseless case the natural stopping rule is ri

= 0. That is, the algorithm stops whenever ri = 0 is achieved.

In our project we have considered the Gaussian noise where εiεη(0, σ2)

7.2.1 The OMP Algorithm: Stopping Rules and Properties

The Gaussian noise case is of particular interest in statistics. The results on the bounded noise cases given

earlier are directly applicable to the case where noise is Gaussian. This is due to the fact that Gaussian

noise is �essentially bounded�.

It can be shown that for εεη(0, σ2In) case the stopping condition ‖ri‖2 ≤ σ
√
n+ 2

√
nlogn will select

the true subset φ(T )with probability 1− 1/n. For our project we have assumed the sparsity of the received

signal to be k. We performed OMP for k iterations to recover the supports.

7.2.2 Understanding OMP: Why and How it Works

To gain insight on the OMP algorithm and to illustrate the main ideas behind the proofs, it is instructive

to provide some technical analysis of the algorithm. The analysis sheds light on how and when the OMP

algorithm works properly.

Note that the support T = {i : Xi 6= 0} and the set of signi�cant or �correct� variables is φ(T) =

{φi : iεT}. At each step of the OMP algorithm, the residual vector is projected onto the space spanned

by the selected variables (columns of φ). Suppose the algorithm selects the correct variables at the �rst
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t steps and the set of all selected variables at the current step is φ(ct). Then φ(ct) contains t variables

and φ(ct)⊂φ(T). Recall that Pt =φ(ci)(φ(ci)tφ(ci))−1φ(ci)
t is the projection operator onto the linear space

spanned by the elements of φ(ct). Then the residual after t steps can be written as

rt = (I − Pt)y = (I − Pt)φx+ (I − Pt)ε ≡ st + nt (7.2.1)

where st = (I−Pt)φx is the signal part of the residual and nt = (I−Pt)ε is the noise part of the residual.

Let

Mt,1 = max
xεX(T )

{|φ′nt|} (7.2.2)

Mt,2 = max
xεXX(T )

{|φ′st|} (7.2.3)

and

Nt = max
xεX
{|x′nt|} (7.2.4)

It is clear that in order for OMP to select a correct variable at this step, it is necessary to have

maxxεX(T ){|x′rt|} > maxxεx/X(t){|x′rt|}. A su�cient condition is Mt,1 − Mt,2 > 2Nt.This is because

Mt,1 −Mt,2 > 2Ntimplies

max
xεX(T )

{x′rt} ≥M −Nt > Mt,2 +Nt ≥ max
xεX(T )

{x′rt} (7.2.5)

7.3.0.3 Average error vs SNR

7.3.1 How We Applied OMP for Channel Estimation

1. Perform compressive sensing on the received signal

2. Apply OMP algorithm to the received signal.

3. Here We assume that we have knowledge about the sparsity of the channel beforehand.

4. After Performing OMP and �nding those basis with high correlation to that of received signal we set

the remaining basis to be zero.

5. This changes the system from an under-determined to an determined system

6. We are now left with the same number of equations as that of unknowns
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7.3 Channel Estimation with OMP results

7.3.0.1 Simulation Screen shots

Figure 7.3.1: Actual Impulse Response
SNR of Channel :15

Length of channel response :247

Number of sparse elements in the channel response :15

Length of the pilot :25

The number of samples N: 271

Number of Measurements :150
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Figure 7.3.2: Estimated Channel Impulse Response
SNR of Channel :15

Length of channel response :247

Number of sparse elements in the channel response :15

Length of the pilot :25

The number of samples N: 271

Number of Measurements :150
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7.3.0.2 Average error vs. measurements taken

Figure 7.3.3: Average error vs M
N for LSE vs OMP-LSE

Length of channel response :181

Number of Sparse elements in the channel response :10

Length of the pilot :20

SNR of Channel :10 dB

1. N is the no. of measurements

2. M is the signal Length

3. Since OMP involves CS the results depend on M and the average errors reduce as M increases.

4. LSE no.of measurements is �xed therefore with M varying performance does not alter.
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Figure 7.3.4: Average error vs M
N for MMSE vs OMP-MMSE

Length of channel response :181

Number of sparse elements in the channel response :10

Length of the pilot :20

SNR of Channel :10 dB

1. N is the no. of measurements

2. M is the signal Length

3. Since OMP involves CS the results depend on M and the average errors reduce as M increases.

4. MMSE no.of measurements is �xed therefore with M varying performance does not alter.
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Figure 7.3.5: Average error vs M
N for OMP-LSE vs OMP-MMSE

Length of channel response :181

Number of sparse elements in the channel response :10

Length of the pilot :20

SNR of Channel :10 dB

1. N is the no. of measurements

2. M is the signal Length

3. As seen from the above graph OMP with MMSE for estimating the channel impulse response performs
better then OMP with LSE for estimating the channel impulse response
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Figure 7.3.6: Average error vs SNR for LSE vs OMP-LSE
Length of channel response :247

Number of sparse elements in the channel response :20

Length of the pilot :20

no.of measurements :100

1. As observed from the graph at very low SNR LSE performs better then OMP-LSE but as SNR reaches
around 30 dB the performance becomes almost equal.

2. Therefore at around 30dB we can get the same performance from roughly 20% percent measurements.

62 62



7.2. THE OMP ALGORITHM CHAPTER 7. ORTHOGONAL MATCHING PURSUIT

Figure 7.3.7: Average error vs SNR for MMSE vs OMP-MMSE
Length of channel response :247

Number of sparse elements in the channel response :20

Length of the pilot :20

no.of measurements :100

1. As observed from the graph at very low SNR MMSE performs better then OMP-LSE but as SNR
reaches around 30 dB the performance becomes almost equal.

2. Therefore at around 30dB we can get the same performance from roughly 20% percent measurements.

3. Comparing above two graphs we observe an expected result that in general MMSE performs better
then LSE.
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Figure 7.3.8: Average error vs SNR for OMP-MMSE vs OMP-MMSE
Length of channel response :247

Number of sparse elements in the channel response :20

Length of the pilot :20

no.of measurements :100

1. At low SNR values OMP-MMSE outperforms OMP-LSE. This is implicit.

2. As SNR reaches around 30dB the performance of the two becomes comparable
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7. Solving this will give us the original signal

8. Once we have recovered these signals we then perform LSE or MMSE estimation to �nd the channel

response
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Chapter 8

Conclusion and Future work

It is evident from the work done till now, Compressive sensing is still a new concept that has much more to

o�er to the world. As shown in our results, it is clear that it has the potential to impact a major breakthrough

in the signal processing �eld. The cognitive Radio via compressive sensing implementation developed by us

has numerous advantages:

1. For detecting the primary users, our method only uses only 10% (approx.) of samples relative to the

traditional methods.

2. As previously mentioned, we do not estimate the signal, we merely detect if there is a primary user or

not by appropriate thresholding, thereby eliminating reconstruction of the signal. The bene�ts of this

point is mainly due to the fact that most of the complexity of compressive sensing lies in receiver stage

or the decoding stage and not the encoding block.

3. From our simulation results, one can observe that our method performs with low error rates adding to

the bene�ts.

4. We implemented an energy detector (which uses the simplest sensing method) to compare with our

model for performance results. From the thorough analysis presented, it is safe to say that our model

stands low in complexity while at the same time sits high in accuracy making it tremendously advan-

tageous.

Our model could be further developed by implementing other sensing methods such as waveform based

sensing, cyclo-stationary sensing et al to obtain a clear view of the model's performance. Since our model

is still in its early stages, it could further be enhanced by incorporating co-operative detection, adaptive

threshold, sensing duration, as well as spread spectrum.

The channel estimation via compressive sensing (Orthogonal Matching Pursuit) and Minimum mean

square error estimator (MMSE estimator) is an optimal method owing to the added bene�ts of Orthogonal
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Matching Pursuit (OMP) and MMSE estimator. These include:

1. Lesser samples required thereby imposing low hardware constraints.

2. Moreover, it is observed that the sparse channel estimation using compressive sensing is found to

perform almost as well as a traditional channel estimation technique.

3. One of the main advantages of OMP is that it is guaranteed to converge in a �nite number of steps.

In channel estimation, further research could be directed towards the wavelet approach for sparse channel

estimation as this is a promising �eld. Another potential avenue is the concept of orthogonal de�ciency (od)

which is a method to assess the orthogonality of the columns of a matrix as shown below:

• od(H) = 1 implies H is singular

• od(H) = 0 implies columns of H are orthogonal
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